On the (v,5, )-Family of Bhaskar Rao Designs

نویسندگان

  • Ghulam R Chaudhry
  • Malcolm Greig
  • Jennifer Seberry
  • Bhaskar Rao
چکیده

We establish that the necessary conditions for the existence of Bhaskar Rao designs of block size ve are : i). (v 1) 0 (mod 4) ii). v(v 1) 0 (mod 40) iii). 2j. We show these conditions are suucient: for = 4 if v > 215, with 10 smaller possible exceptions and one deenite exception at v = 5; for = 10 if v > 445, with 11 smaller possible exceptions, and one deenite exception at v = 5; and for = 20, with the possible exception of v = 32; we also give a few results for other values of .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bhaskar Rao designs over small groups

We show that for each of the groups S3, D4, Q4, Z4 x Z2 and D6 the necessary conditions are sufficient for the existence of a generalized Bhaskar Rao design. That is, we show that: (i) a GBRD (v, 3, λ; S3) exists if and only if λ ≡ O (mod 6 ) and λv(v 1) ≡ O(mod 24); (ii) if G is one of the groups D4, Q4, and Z4 x Z2, a GBRD (v, 3, λ; G) exists if and only if λ ≡ O(mod 8) and λv(v 1) ≡ O(mod 6)...

متن کامل

Bhaskar Rao designs and the groups of order 12

We complete the solution of the existence problem for generalized Bhaskar Rao designs of block size 3 over groups of order 12. In particular we prove that if G is a group of order 12 which is cyclic or dicyclic, then a generalized Bhaskar Rao design, GBRD(v, 3, λ = 12t;G) exists for all v ≥ 3 when t is even and for all v ≥ 4 when t is odd.

متن کامل

Bhaskar Rao designs and the alternating group A4

In this paper we introduce a new construction for generalized Bhaskar Rao designs. Using this construction, we show that a generalized Bhaskar Rao design, GBRD(v, 3, A; A4) exists if and only if A == 0 (mod 12).

متن کامل

Generalized Bhaskar Rao designs with block size three

We show that the necessary conditions λ = 0 (mod IGI), λ(v-l)=0 (mod2), λv(v 1) = [0 (mod 6) for IGI odd, (0 (mod 24) for IGI even, are sufficient for the existence of a generalized Bhaskar Rao design GBRD(v,b,r,3,λ;G) for the elementary abelian group G, of each order IGI. Disciplines Physical Sciences and Mathematics Publication Details Seberry, J, Generalized Bhaskar Rao designs with block si...

متن کامل

Bhaskar Rao ternary designs and applications

Generalized Bhaskar Rao n-ary are defined. This paper studies with elements from abelian groups of Generalized Bhaskar Rao nary called Bhaskar Rao Bhaskar Rao a v b matrix of ±1 and such that the inner product of any two rows 0 and the matrix obtained of X by its absolute value the incidence matrix of the construction of infinite families of Balanced Balanced are Some construction methods and n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998